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ABSTRACT 

Diagrammatic methods for decomposing Kronecker products of arbitrary 

representations of any of the classical groups are presented. For convenience, 

efficient ways of computing the dimensions and quadratic Casimir’s C&R) are also 

given. These methods seem more useful for hand calculations than the method of 

Schur functions (or characteristic polynomials). An appendix presents the 

Kronecker products for any two representations of dimension 2 100. 
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INTRODUCTION 

The particle physicist looking at the theory of groups is generally interested 

in certain “practical” questions concerning the representations of the groups. 

Among these questions are 

a) What groups are available? 

b) What representations exist for a given group, and what is their nature? 

c) Branching rules: How representation R of group G breaks into represen- 

tations Si of subgroup H. 

d) Kronecker Products: How R, @ R2 breaks into irreducible representations 

Si@S2cB...$Sn. 

e) “Clebsch-Gordan” coefficients for R,@ R2: This, of course, needs-the 

answer to (d) as a starting point. 

There is a~ tendency to assume that mathematicians have addressed and solved 

these “practical” questions, yet it is not easy to find answers in the literature. The 

available groups (in the sense of having finite dimensional representations) are well 

known: SUN), SO(N), Sp(N), the five exceptional groups, and products of these 

groups. Questions (b) and (c) are answered in table form in Patera and Sankoff’; 

but these tables give no insight as to how the representations and branching rules 

are obtained. A partial table of Kronecker products exists,2 but it suffers the 

same flaw, and also omits some important groups, for example, SO(IO), and lists no 

spinors at all. The problem of “Clebsch’s” is a most difficult question in practice 

(although simple in theory once the Kronecker product is understood), and will not 

be addressed here. 

Many physicists are familiar with Young Tableaux methods for finding the 

dimensions of representations and decomposing Kronecker products in SUN). This 

work generalizes these procedures to the groups S0(2N+l), SP(ZN), SO(2N) and G2. 
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The methods mathematicians describe use “characteristic functions”3 or Schur 

functions2’li and are both non-intuitive and hard to learn to apply. The Tableau 

method has the additional advantage that one can check whether R,@ R, contains a 

particular R3, without having to do the full product. 

We have tried to make these rules as simple and “cookbook-like” as possible. 

Actually drawing out the diagrams is easier than working with lists of numbers, but 

these diagrams can’t appear in the text, so they are represented by a string of 

numbers in parentheses, with perhaps a symbol (4, f or *) in front,describing the 

number of boxes in each row. Representations can also be described by the Dynkin 

numbers, which we put in brackets [] ; this notation is standard and is how they 

appear in reference 1. The notation (abc...n) matches that in reference 2 for hon- 

spinors; we feel our notation for spinors is more convenient for a reason described 

below. 

Our method of getting the dimension of an SU(N) representation may differ 

from the “product of boxes over product of hooks” rule familiar to some physicists. 

It is, however, equally easy to apply, and falls into the same pattern as the other 

groups S0(2N), SO(2N+l), Sp(2N], G2 and F4. The six rules for Kroenecker products 

may look imposing, but rules 1-3 cover all but certain SO(2N) cases, and in any 

event, these rules are easier to use than to concisely describe. 

In the literature,’ it is advised that the practical way of multiplying two 

representations is to multiply their dimensions, and look for a set of irreducible 

representations whose dimensions total that number, resolving ambiguities by using 

“Dynkin indices” (values of the quadratic Casimir operator). This method works for 

the few smallest representations, but for larger numbers it becomes fantastically 

cumbersome and ambiguous (e.g. in SO(7) there is a 35 dimensional representation, 

a 27 representation, a 7 representation, and the trivial I representation, 

3.5 = 27 + 7 + 1. ‘Their Dynkin indices are’ 20, 18, 2 and 0 respectively. Thus 
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whenever a 3%dimensional representation appears in R, @ R2, it could be replaced 

by 27 + 7 + I). The rules set forth below are trivial to apply in these low-dimension 

cases, and are unambiguous in all cases. Dimensionally checking the result is, of 

course, still useful to prevent errors. 

We append to this article a list of decompositions of all products where R, 

and R2 are both 2 100, and up to 210 for SO(lO), which is of special interest to 

grand unification theorists. We omit SU(N), which is easy to decompose using rules 

1 and 2. The Sp(2N) products appear in reference 2 and are included here for 

completeness. 

REPRESENTATIONS AND THEIR DIMENSIONS 

A representation of a simple group of rank r can unambiguously be specified 

by a set of r integers corresponding to the r simple roots of the group. For 

example, in SIJ(31, [ I,O] is the 3, [O,l] the 3, and [ I,11 the 8; in SO(lO), [ 10000 ] 

is the 10, and [ OOOIO], [ OOOOI] are the 16 and n. This is how the representations 

are listed in ref. 1, and we always will use square brackets and integers not 

separated by commas when referring to such a specification (we have had no 

occasion to look at any representation in which a number is more than 9 in this 

specification scheme]. 

It is well known to physicists, at least for SU(N], that it is often more 

convenient to specify representations by “Young Tableaux.” In the case of SU(N), 

the Young Tableau corresponding to [ aIa2...an-,I consists of a,,-, columns of n-l 

boxes, followed on the right by anp2 columns of n-2 boxes...with lastly aI “columns” 

of one box each. Thus inSU(6], for example, [ 21031 I is drawn as shown in Figure 

1. We will find it convenient to describe a Tableau by listing in parentheses the 

number of boxes appearing in each row. [ 21031 ] in SU(6) is then written as 

(75441). This notation should enable the reader to easily draw out any tableau in an 

example here. 
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The advantages of using such Tableaux are 3-fold: In terms of the Tableaux, 

one can compute the dimensionality of the representation, compute Kroenecker 

products of two representations, and identify the symmetry properties of a repre- 

sentation (two boxes in a row mean two symmetric indices; boxes in a column imply 

antisymmetric indices). The justification for our particular way of defining 

Tableaux for SO(N) and Sp(2N) is that we want to preserve the first two properties; 

the third can’t be kept when spinor representations are involved. 

For Sp(ZN) the tableau is the same as in the SU(N) case. It will be seen, 

however, that where [a,b ,..., z 1 and [z ,...,b,a 1 are conjugate representations in 

S&(N), they are not related in Sp(2N). 

S0(2N+I) has the property of including spinors. The last number z in 

[abc , , ,...,z] will determine if the representation is a spinor: if z is odd, it is a 

spinor. A pair of spinor indices can form vectorlike indices. Thus, if z is even, the 

tableau will contain z/2 columns of N boxes (as opposed to z such columns in, say, 

Sp(2N)). If z is odd, the tableau will look the same: there are (z-1)/2 columns of N 

boxes, and to indicate a spinor is being described, an arrow is added to the notation. 

For example, as in figure 2, in SO(7), [ 1231 = (+431). [ 002 ] would be (111) while 

[ 0031 is (+ 111) and [ 0011 is ( tOO0). 

SO(2N) also has spinors; it has the added complexity of the last 2 roots 

referring to spinor indices. Let the representation be [ a,b,...,y,z] where ZL y. 

Then if y + z is odd, it is a spinor indicated by an upward pointing arrow. There are 

y columns of N-l boxes, and (z - y)/2 (or (z-y-1)/2 in the case of a spinor) columns 

of N boxes. What is happening is that pairs of one of each type of spinor indices 

form vector indices of .one kind, and then excess pairs of one type of spinor index 

form other vector indices. Thus, as in figure 3, [ 00014 ] in SO(10) becomes 

(422221). 
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When y > z, the conjugate representation is formed: In SO(IO), 16 is [OOOOI] 

and E is [OOOIO I. In this case, there are z columns of N-l boxes, and (y - z)/2 (or 

(y-z-1)/2) columns of N boxes. When taking Kroenecker products, it is important to 

know whether you are doing R x R or R x R, so we distinguish the y > z represen- 

tations by a down arrow if spinors {j 00021 1 = (t 11110) } or a star if the 

representation is a non-spinor {( 110040 1 = (*32222)}. 

To find the dimension of a representation (a a , 2...an) in a group one follows 

the following prescription: Add to the ai (or twice ai, if the group is SO(N)s 

simple set of numbers (again dependent on the group), to get ai. Form the product 

of some combination of the ai, their differences Aij = Iii -II j (i > j) and their sum 

E = !$ + 9, (i > j), and divide by a specified denominator, which is the same as. the 
‘1 I 

numerator for all the ai = 0. The specifics of this process are given in Table 1. 

Non-spinor 

spinor 

Non-spinor 

spinor 

Table 1 

Group ‘i Numerator Denominator 

W(N) Li = ai + N - i lLirIAij 1!2!. . . (N-l)! 

Sp(2N) ki = ai + N - i lTairr* ijn 1!3!...(2N-I)! 

S0(2N+l) Iii : 2ai + 2N+1 - 2i bikl ijfl, ij 2N(N-‘)1!3!5!.. .(2N-I)! 

S0(2N+l) Iii = 2ai + 2N+2 - 2i same same 

SO(2N) ti = 2ai + 2N - 2i rLij rIcij 2N(N-l) (N-1)!1!3!5!...(2N-3)! 

SO(2N) Iii = 2ai + 2N+l - 2i same same 

The process is illustrated for the representations (tlOO0) in SO(g) and SO(V) 

(figure 4); the numbers down the left side are common to any SO(g) (SO(V)) repre- 

sentation, and the +1’s are because this representation is a spinor. 

When the group in question is G2, two integers [ p,q I will label the represen- 

tation, and the dimension can be computed from the Young diagram (which is 
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(p+q, q)) by labelling the side with I,2 so that ai = 2 - i + ai, and forming the 

numerator II!$IIAijIIEij x (2!2L + 112)(2!J.2 + 9, L]. The denominator is 120. Equiv- 

alently, the dimension is given by (p+l)(q+l](p+q+2](p+2q+3)(p+3q+4)(2p+3q+5] 

divided by 120. 

For representations of F4, there are non-spinors [ a,b,2c,d ] and spinors 

[ a,b,2c+l,d 1. The diagram for a nonspinor has the form (d+a+2b+3c, a+b+c, b+c, c) 

and for a spinor (td+a+2b+3c+l, a+b+c, b+c, c). Equivalently, (w,x,y,z) = [ x-y, y-z, 

2z(+l for spinor), a-b-c-d(-I]]. Notice that the first row is always at least as long 

as the sum of the lengths of the other three rows. To find the dimension of a 

representation, write 11,5,3,1 down the left side, and add two per box, plus I more 

if it is a spinor. (ai = 2ai + 11, 5, 3 or 1 for i = I, 2, 3 or 4, +I for a spinor or 0 for a 

nonspinor.) Then form the numerator: riQin*ijnEij(Ql+Q2+Q3+Q4)(Q,+Q2+Q3- 

Q,) x (Q +Q -Q +Q )(a, +Q -Q -9. )(Q -Q +Q +Q )(Q -Q +Q -Q )(Q -Q -Q +Q )(Q - 123412341234123412341 

Q,-Q3-Q4). Note that because a, 2 a2+a3+a4, all of those are positive. The 

denominator is, as usual, the numerator with al = a2 = a3 = a4 = 0, which works out 

25 to be 11!9!!25x 2 . Of course, dim [pqrs I can be written as a polynomial (of 

degree 24) in p,q,r and s, but this is not very illuminating or convenient. 

KROENECKER PRODUCTS 

When taking the Kroenecker product of two representations, arrange the less 

complicated representation on the right, and label it with an “a” in each box in the 

first row, b’s in the second row, etc. Then follow the rules set down below. Note 

that one can check the result by seeing whether the sum of the dimensions of the 

results is equal to the product of the dimensions of the representations being 

multiplied. Also, it is sometimes easier to use the following trick than to multiply 

out explicitly: Say you need RI@ R2, and you know that S,@ S2 = R2+Tf+T2+..., 
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where the Si and Ti are all much simpler than R2. Then one may write 

R2 = Si ~3 S2-Tl-T2... and do (R,@ Si) @S2, subtracting the results of 

R1@TI+R2@T2+... This trick will be illustrated below. 

Two techniques were utilized in deriving these rules. Careful manipulations 

of tensors and group invariants can indicate the procedure when there are no spinor 

indices (or implied spinor indices). When spinors are present, it is possible to use 

the trick described above to determine what the product is; one can then Carefully 

note for the general cases which representations will remain after subtracting 

R1@T,+R2@T2+... This procedure could in principle have become prohibitively 

cumbersome, but any combination rules simple enough to be practical to aPPLY 

are also relatively easy to derive in this way. 

-1: Adding one box: One tacks a single box onto the end of any row 

(including a row of 0 length) in all ways so as to leave a correct tableau for the 

particular group (no row longer than the one above, and the number of rows not 

exceeding the rank of the group). For example (see figure 5) in SU(4), (110) &I (100) 

contains (210) and (11 I). For notational convenience, we will write the operation of 

appending an “a” box in the nth position of the kth row as {a+n, k}. Thus in this 

example, we have {a +2, I} and {a+ 1, 3 }. 

Rule la: In SU(N) you can add the box to the nth row (the rank is n-l) and 

cancel that whole column. This corresponds to contracting n indices via an epsilon 

symbol. Thus in SU(3), (l,l)@ (1,O) contains (0,O) via {a+ 1, 3 (elim. col. l)}. 

Rule lb: In S0(2N), S0(2N+l) or Sp(ZN), one may also use the added box to 

cancel a box in the existing tableau. For example, in SO(lO), (11000) @ (10000) 

contains, via {a+ 1, 2 cancel 1, (10000). This corresponds to contraction with 6 ab, 

an invariant in SO(N), or with Rab, the antisymmetric invariant in Sp(2N). 

Rule 1~: In SO(2N) or S0(2N+l), if RI is a spinor and does not contain any N- 

box column, you’may also use the added box to simply flip the direction of the 
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spinor-indicating arrow. In S0(2N+l) this means simply “absorbing” the box in the 

spinor arrow. For example, in SO(g), (f200)@ (100) contains, via {a + 4)) (t 2001. 

In SO(7), (4200) @ (100) contains (4 200). 

Rule Id: Only in S0(2N+l), one may also “merge” the added box with the last 

box in the Nth row. Thus in SO(7), (222)@ (100) contains, via (a +2, 3 merge}, 

(222). 

Rule le: In SO(ZN), when adding a box at the Nth row in the 1st column 

[a ‘1, N }, both (abc...l) and (*abc...l) appear in the result. For example, in 
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SO(lO), (11110) is [OOOl I] and (10000) is [ 10000 I. In their product, since they are 

both self-conjugate (under exchange of the last two Dynkin numbers) you would get 

both [00002 I and [ 00020 I, that is, both (11 I1 I) and (*I 1111). 

Rule 2: Adding more than one box. Label the boxes in the top row “a,” the 

next row “b,” etc. Add each box one by one, always in a one-box-permissible way, 

the top row first, then the 2nd row, etc., and such that reading from right to left 

and then up to down, the number of “a” boxes encountered is always 2 the number 

of “b”‘s Lnumber of “c’%, and so on. Two representations are distinct if the a,b,c... 

labelling differs. For instance, in SU(4), (210) @ (210) contains both a (321) from 

{ a+3, 1; a+2,2, b+l,3} and a (321) from {a-+3, 1; a+l, 3; b+2,2}. Also, no 

two a’s (or b’s or c’s...) may appear in different rows of the same column. Such a 

representation would be both symmetric and antisymmetric in those two indices. 

Rules 1, la and 2 fully cover the case of SU(N). 

Rule 2a: In Sp(ZN), S0(2N+l) or S0(2N), you may use a box from R2 to 

replace a box in R, that was previously cancelled. Thus (200)x (110) contains (200) 

via {a+ 2, 1 cancels; b+2, I} . For the purposes of rule 2, these would count as an 

“a” and a “b” simultaneously. 

Rule 2b: Rarely, when applying rule 2a using boxes of two different rows, it 

will be found that rule 2 is satisfied (the right-to-left and up-to-down part) whether 

the labelling of the re-added box is ab or ba. For example, in Sp(6), (llO)@ (210) 

contains, via {a ‘2, 1; a + 1, 2 cancel; b + I, 2} the representation (210). As can 

be seen from figure 6, rule 2b applies here. In this case, two (210)‘s appear in the 

result. 

Rule 2c: A box m&y never cancel a previously added box. This operation 

would correspond to taking a trace (or symplectic trace by contracting with nab) 

over two indices which both appear in R2, but R2 is irreducible, so the operation 

gives zero. 
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Rule 2d: In Sp(2N), two boxes from different rows may not cancel and re-add 

a box in the Nth row. Thus in Sp(8), (1111) CZ (1100) does not contain (1111). 

Rule 2e: Up to one “a,” one “b”... may be absorbed by a spinor line on SO(2N) 

or S0(2N+l). 

Rule 2f: When cancelling boxes, you may anticipate future cancellations. An 

example of this should explain: In SO(V), (21 IO)@ (1100) contains (2000) via 

{ a+l, 2 cancels; b+ 1, 3 cancels} (see figure 7). When a box is subsequently re- 

added, if an Nth row box was cancelled in Sp(2N) rule 2d applies and the tableau 

should not appear in the result. In figure 8, (1111)~% (1110) is done in Sp(8). Note 

that (II 10) does not appear in the answer. - 

Rules 1 thru 2f fully cover Sp(2N). When spinors or representations with N-l 

or more rows in SO(2N) or S0(2N+l) appear, one must also apply the following 

rules: 

Rule 3: (RuIes 3-3d apply to S0(2N+l)) No two boxes from the same row may 

merge together. For example, in SO(7), (100) ~9 (111) contains (111) via { a+2, 1; 

b +3, I; c+3, 1 merge}. But (110)@(200) does not contain (111) via {a+3, 1; 

a +3, 1 merge}. 

Rule 3a: “Merging” boxes, in actuality, is adding the boxes in the N+lst row, 

and using the 2N+I-index epsilon symbol S0(2N+l) invariant to reduce the column 

of X boxes to 2N+l-X boxes. It is necessary to use this more cumbersome point of 

view when R2 contains a column of N boxes. For example, in SO(7), (111) @ (I 11) 

contains (100) via {a +4, 1; b + 5, 1; c+ 6, 1 contract E } , which would not be 

obtained by any combination of merging and cancelling. 

Rule 3b: When Rl is a spinor, boxes absorbed by the spinor line as per rule Ic 

count as being put in the N+lst row for the purposes of the right to left and up to 

down part of rule 2. This also applies to SO(2N). 
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Rule 3c: When R2 (but not R,) is a spinor, the resulting representations are 

all spinors and are formed by multiplying as if R2 was a non-spinor, adding the 

spinor line, and, for each result, removing zero or one box per row. Figure 9 

illustrates this for SO(7) (110) x (4100): The (210) in (110) x (IOO), for instance 

leads to (+ 2101, (4 1101, (4200) and (4100). When applying this rule, sometimes one 

gets repeated diagrams. In this case, discard one of each group of identical - 

diagrams. In the example shown, of the 3 (t 1001’s, only two are kept. This rule will 

also apply to SO(2N) when Rl has less than N rows. 

Rule 3d: When both Rl and R2 are spinors, the answers will, of course, be 

non-spinors. Multiply the non-spinor parts, and then for each result, add zero or 

one box per row in all possible ways. This is illustrated in figure 10 which does 

(4 100) x 4(100) in SO(7). Note that the repeated diagrams are all counted. 

Applying rule 36 one can immediately see that 

(40000...) x (+oooo...) = (OOOO...) + (IOOO...) + (IlOO...) + . . . + (ll...ll). 

Rules I-3d fully cover S0(2N+l). Rules 4 and 5 apply to SO(2N). 

Rule: When at least one of Rl and R2 is a nonspinor and contains no column 

of N rows, use rules 4a thru Uf. 

Rule 4a: When a box is being added to the Nth row, 1st column it can stand 

for either [ . . . . 0,21 or I..., 2,Ol. Thus the representation is counted twice, (a,b,c...) 

and (*a,b,c...). This is a generalization of rule le. 

Rule 4b: When Rl is a spinor, or already has N-box columns, the doubling in 

rule 4a does not apply. For example, in SO(101, (+11110)@(10000) = (t 11100) + 

~421110~+~11110)+(f11111): Thereis~also($11111). 

Rule 4c: When cancelling and re-adding in the (N,I) position, this doubling 

does not apply. Thus, in SO(lO), (lllll)@ (11000) contains (11111) but not (*lllll). - 

Rule 4d: The spinor line in RI changes direction once for each box “absorbed” 

in it. 
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Rule 4e: When Rl and R2 have long enough columns, one may also form 

columns of M > N boxes and use the 2N index epsilon symbol to create 2N-M box 

columns. This result is not distinct from what would be gotten by cancellations 

only, without re-adds. Figure I1 shows how this works: In SO(g), (1110) @ (1110) 

contains (1100) via {a+2, 1 cancels; b q 2, 1; c+3, 1 cancels } and another (1100) 

via (a-t4, 1; b+5, 1; c+6, 1 epsilon}. Yet in (llll)~Z~ (11101, the (10001 from 

{ a+2, I cancels; b+3, 1 cancels; c+4, 1 cancels } is the only one counted; 

[ a+5, 1; b+ 6, 1; c+7, 1 epsilon} is the fame (1000). 

Rule 4f: When R2 (but not R,) is a spinor, and R, has no N-box columns, do 

the multiplication just as in S0(2N+I), using rule 3c. When an odd number of boxes 

was eliminated, the resulting spinor arrow is in the opposite direction from that of 

R2 if R2 had no N-box columns. 

This covers SO(2N) except when a circumstance peculiar to SO(2N) occurs: If 

both Rl and R2 are not self-conjugate (they are spinors or have N rows), then it 

makes a difference whether you multiply R, by R2 or by its conjugate. For 

instance, in SO(lO), it is well known that 16 @E = 1 + 45 + 210, while 16 @ 16 = 

10 + 120 + 126. This phenomenon, covered in rule 5, is distinct from that of rule 

le, although the underlying reason for both is the two distinct (yet isomorphic) 

types of spinors available. 

Rule 5: (4000...00)~ (4000...00) = (11...111111) + (11...111100) + 

(11...110000) + . . . . while (t0000...00)~ (+ooo...oo) = (11...11110) + (11...11000) + 

(11...100000) + . . . This is illustrated for SO(lO1: 16 ebx in figure 12. It is 

interesting to note that in S0(4Nj, a spinor @ itself contains the 1 representation, 

and a spinorBits conjugate contains the “vector” 4N, while in SO(4N+2), 

spinor @ spinor contains 1, while spinor @ spinor contains the vector. This pattern 

is easy to verify for SO(4) (isomorphic to SU(2) x SU(2): (+ 00) + { K,O} and 
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(COO] + IO,& j so 4 x 4 = {l,O} + [ 0,O j = (II) + (00) while 4 x4 = (IO)) and for 

SO(6) (isomorphic to SU(4): 4 + 4, 4 + ‘i, so 4 x 4 contains a 6, the vector in SO(6), 

while txC hasa I). It is also obvious in SO(g), the first non-trivial S0(2N], 

because of the symmetry of SO(g) which says [abed ] and [ cbad ] (and 

[abdc 1 = [abed I, of course) are isomorphic. Thus [ 10001 looks like [ 00011: the 

vector and spinor gv, 8, are as alike as 8, and 8,. So, when taking 8s x 8s, this 

can’t contain gv, because if it did, the symmetry would tell you that 8,x 8, 

contains zi s, a contradiction since two non-spinors can’t produce a spinor. This 

symmetry property is useful for doing SO(g) Kroenecker products. For instance, 

(1111) x (*I 111) is [0002] x IO020 I which is related to [0002 ] x [2000] or 

(1111) x (2000], an easier product to take. For this reason, SO(g) is also a good 

“laboratory” for seeing how complicated SO(2N) representations multiply; for the 

remainder of rule 5, SO(6) and SO(4), where the results are easy to derive in a 

different way, can also be used to illustrate the various rules. 

Rule 5a: When R2 is an elementary spinor, [ OOO...Ol ] = (tOOO..J or 

[ OO...lOl = (4 OO...) and RI is a non-spinor with N rows (if RI has fewer rows, see 

rule 3~). For the sake of Illustration, we will assume R, is of the type [ab...yz], 

z > y. If y > z, then one can still use these rules by multiplying the conjugates of 

R, and R2, and conjugating the answer. E.g. [0002] @ [OOOl] = [0003] + 

[ 00211 + LO101 I + [ 10101 + [OOOI] in SO(S), so [0020]@ [OOIO] = [0030] + 

[ 00121 + [ OllO] + [ lOOl] + [ OOlO]. The rule is to eliminate zero or one box per 

row in R, in all possible ways such that an even (odd) number of boxes are 

eliminated if R2 is 4 (4 ). Assign a 4 spinor orientation to each of the results. (The 

z in RI, which must be eat least y+2 since R, is a non-spinor, dominates even if R2 

is 4.) 

Rule 5b: When RI is a spinor and R2 is an elementary spinor, add zero or one 

box per row in RI in all possible ways such that the total number of boxes added is 
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of the same parity as N (N+I) if the two spinor arrows are in the same (opposite) 

direction. The results are non-spinors, and if RI = (+abc...) they all have y 2 z; if 

RI = (tab...) they all have z my. This rule is shown in figure 13, wherein 5608 n 

is done for SO(10). The 560 is [OIOOI ] or (4 11000); the E is (+ 00000) or [ 00010 1. 

The result is (11000) + (11110) + (21100) + (22000) + (22200) + (22110) + (21111). 

XfJ x 16 would contain (‘21111) = [IO0201 rather than (21111). 

Rules 5c-5g will cover the cases where R2 is a non-elementary spinor and R, - 

contains N rows. It will be more practical, however, to treat these cases by writing 

R2 as 4 x S - various smaller spinors. For example, in SO(g), (2111) x (4 1100) = 

(2111) x{(40000) x(1100)-($1000)-(40000)} = (2111) x {(IlOO) x (40000) - 

(1000) x ($0000) + (4 0000) - (4 OOOO)}. Each of the two resulting triple products is 

easy to do. Figure 14 shows (111 I)@ (4 1000) in SO(8) graphically, to illustrate how 

simple the tableau method makes things. 

Rule 5~: When Rl is a non-spinor of N rows and R2 is a spinor containing less 

than N rows: Combine the non-spinor parts normally, and eliminate one box each 

from an even number of rows (if R2 is 4; an odd number if + ). AII the resulting 

representations are 4, except if in combining the non-spinor part, you get a repre- 

sentation with less than N rows (the bottom boxes were all killed). In that case, for 

that representation, the results are all 4, and the number of boxes eliminated is of 

the other parity (odd if R2 is 4). This process is illustrated in figure 15, in which in 

SO(g), (1111) x 4 (1000) is done directly. (1111) X (1000) = (2111) + (IllO), 

(2111) +(t 2111) + (42100) + (41110) + (tlOOO), (lllO)+ (+ 1100) + (40000). After 

doing this, certain representations may have to be discarded, as outlined in 5d and 

5e. 

Rule 5d: When a representation can be arrived at in two or more ways, by 

elimination of boxes in two or more different representations, discard one of those 
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representations. For example, in SO(8) (4321) x (+lOOO), (5321) -c (44311) + others, 

(4421) + (f4311) + others, but only one of these (f431I)‘s appears in the result. 

Rule 5e: When all the eliminated boxes are the boxes coming from R2, 

eliminate one of that kind of representation, even if there appear no others. For 

example, in SO(g), (1111) x (t1000): (1111) x (1000) contains, via {a+ 1, 2}, (2111). 

(2111) + (4111 1) by eliminating the box at the end of row 1, which came from R2. 

Thus (1111)x(+1000) does G contain this (41111). On the other hand 

(2111) x (+lOOO) can form (42111) in two such ways: (3111)+ (t2111) and 

(221 I) -c (4211 I), so one of these is discarded, and one appears in the answer. 

Rule 5f: When R2 is a spinor with N rows and R, is a spinor with less than N 

rows: Multiply the non-spinor parts. To each result add an odd or even number of 

boxes in all possible ways, adding up to one per row. The number of boxes added is 

of the same parity as N if RI and R2 are both 4 (or both +) and the opposite parity 

otherwise. (Here is another case in which S0(4N+2) differs from SO(4N).) Then 

eliminate one of each set of duplicated representations as in 5d, and one of each 

type of representation formed by adding, in the 2nd step, boxes that were 

eliminated in the 1st (as in rule 5e). Also eliminate one of each type of 

representation wherein just one entire column was added in the two steps. 

Rule 5g: Multiplying two N-row representations is best done via the 

procedure in rule 5c. However, when both R, and R2 are of the form [O0...02m ] 

or [ O0...2m 1, a simple pattern emerges: start with the representation formed by 

adding [ O0...2m ] (RI) to [ O0...2m] or [ O0...2m,O ] (R2), to get [ O0...2m,2m] or 

[ OO...$m I and eliminate pairs of vertically touching boxes. This is illustrated in 

figure 16 ior [00002] x [00002 ] of SO(10): 

(1 I I II) x (11 II 1) = (22222) + (2221 I) + (22200) + (211 I I) + (21100) + (20000). This 

process is applicable to any R, and R2 of the form [ OOO...K] or [ OO...KO 1, with 
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the 1st M columns (M = IK/2 (Ri) - K/2 (R2)/ 1 untouched by the elimination 

process: [00004] x [00020 1 in SO(10) is shown in figure 17: (22222) x (*11111) = 

(33331) + (33221) + (22221) + (33111) + (22111) + (11111). 

Rule 6: Products of representations of C2: the simplest diagrammatic means 

of multiplying two representations of G2 relies on the fact that SU(3) is a subgroup 

of G2. The procedure entails 4 steps: I) Break R, and R2 down into their SU(3) 

content (S,I + S12 + Si3...) x (S2I + S22 + S23 . ..). 2) Multiply these SU(3] repre- 

sentations to get (S,, x S2,) + (S,I x S22) + . . . = T, + T2 + . . . 3) Choose a particu- 

lar Ti to be part of the content of some GL representation. 4) From the set {Ti}, 

eliminate the content of that representation. Repeat steps 3 and 4 until no repre- 

sentations are left over. Steps I-4 are each explained in some detail in rules 6a- 

6d. 

Rule 6a: To get the SU(3) content of a G2 representation: write the symbols 

p, q and o, one in each box in the Young diagram, in all ways such that within a 

row, the p’s precede the q’s which precede the o’s, and within a column, p is above 

q, which is above o. Both boxes in one column may not contain the same symbol. 

Each of these arrangements becomes one SU(3) representation, [ p,q] with p = the 

number of p’s appearing in the labelled tableau, and q = the number of q’s. This 

process is illustrated in figure 18 for 7 = [IO ] + 3 + 3 + 1 and in figure 19 for [II] 

(64 dimensions in G,) + 15 + 6 + i3 + 8 + 8 + 3 + g + 3. 

Rule 6b: Of course, SU(3) Kroenecker products are easy to do. But a further 

factor of two in time spent can be saved if one makes use of the fact that the G2 

representation always contains both R and I? of SU(3). 

Rule 6c: The G2 representation to eliminate first is found by picking the 

remaining SIJ(3) representation with the longest first row (when two have equal 

first rows, the longest second row).. This is the Ti of step 3. Call this 
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representation (a+b, b) or [a,b] of SU(3) (b will always be greater than a); then the 

G2 representation to eliminate this is (b,a). The reason this representation is 

chosen is that the minimal G2 representation that contains (a+b, b) is (b, a). (b, a) 

decomposes into SU(3) representations (p+q, q) with p+qL a+b and if p+q = a+b, 

q < b. Thus by eliminating any of the other representations, one would never get a 

G2 representation that includes Ti. So eventually, one will have to use (b, a) in G2. 

This representation, however, will decompose into others of the remaining 

representations, so one should eliminate those first. For example, when doing 

I4 x 7 in G2, one has the SU(3) representation (32), 3 (21)‘s, as well as others. If 

you tried to cover the (21)‘s first by using 3 (11)‘s of G2 {(II) in G2 contains (21) in 

SU(3)}, then later, when taking care of the (32), you would find you still have-to 

eliminate two more (21)‘s {which are no longer available}. But if you start with 

the (32), this dilemma can’t occur. 

To illustrate this procedure, [ 011 x [ 201 (or 14 x 27) is done below: Step I: 

G,1011+[111 +1101+1011, G,[201+[:0] + [II] +[I01 +[021+[01]+ 

[ 00 1. Step 2: The product of the 1st set with the 2nd set is {([31] + [ 12 ] + 

120]+[01])+ [[301+ [21]~+[[21]+[101~}+{[[22] +[30]+[03]+[11]+ 

IO0 I) + [[211 + [021 + [IO]) + [[I21 +[201+[011)}+{[[211+ [021+ 

[101)+[[011 + [201)+ [[Ill + [OOI)} + { ([I31 + [21]+[02]+ [IO])+ 

[[I21 +[011)+[[031+[121)} + { ([13] +[20]+[01])+([101 +[021)+ 

[[II] + [ OO])}+ {[II] + [IO] + [Ol]}. Step 3: The 1st representation to 

eliminate is [ 131 because 4 is the biggest sum, and among the representations with 

a sum of 4, [ 131 has the biggest 2nd number, i.e. [ 13 ] = (43) while [ 221 = (42). 

[I31 +(31)G2= [Zl]G,. Step4: [21]G, +[31]+ [30]+[22 ]+ [21] +[21]+ 

[20]+ [13]+[121+[12]+[11]+[11] +[101+[031+[021 +[Oll. Of 

course the [ 131 (and [ 311) are what we picked [ 21 ]G2 for. Cancelling these 15 

representations, we return to step 3: the [31], [ 13 I and, by accident, the only 
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[ 221 have all been eliminated; next is [ 031 = [33), since one of them is left. 

[ 03 I -. [30]G2 = 1301G2+[301+[211 +[201+ [121+[111+[101+103]+ 

[ 021 + LOI1 + [OOI. Eliminate these 10, and repeat step 3. Completing the 

process, we find that, in G2, [ 20 ] x [ 011 = [ 211 + [ 30 ] + [ 1 I] + [ 20 ] + [ 011 + 

[ 10 I, or 27 x I4 = 189 + 77 + 64 + 27 + I4 + 7 in terms of dimensions. 

It is not as easy to formulate rules for the other exceptional groups. (F4 

representations may be decomposed into SO(V) representations’ and multiplied as in 

rule 6, but the simple decomposition rule we have put forth for G2 is absent in this 

case.) 

AN APPLICATION IN GRAND UNIFIED THEORIES 

It is currently popular to postulate that the grand unified group is some large 

group [usually SU[N] or S0[2N] with N 25). The symmetry is then broken in some 

series of steps down to SU(3) x SU(2) x U(1). It has been proposed4 that instead of 

elementary Higgs, the scalars should be composites made of two fermions. 

Dimopoulos and Susskind’ give a “rule” for determining which fermions might 

condense out: Say the fermions are in representations R,, R2,...,Rn. Then the 

condensate will form in the “most attractive channel” [this assumes that one gluon 

exchange is the important process). To determine the relative attractiveness of 

channels Ri + Rj + S [where S c Ri @ Rj), one compares C2(S) - C2[Ri) - C2(Rj). 

Thus to apply the Maximally Attractive Channel [MAC) prescription, one needs to know 

Rim Rj and the quadratic Casimir’s for the relevant representations. The rules for 

getting Ri @ Rj are given above. Since these large groups don’t appear in reference I, it 

would be useful to find a way to compute C2(R). Fortunately, C2(R) is, for the classical 

groups, a polynomial of degree 2 in the indices [ an] which describe the representation. For 

SU(N+I), with R = [ aIa2a3...aN] 
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k(N -k + I)(a; + (N + I)a,) 

+ 2 f 1 j(N - i + 

i=2 j4 

/Z(N + 1) 

When R is the defining (N + I) dimensional representation, C2(R) is normalized to 

N(N+2)/2(N+I). Thus for SU(3), C2(R) = -$a: + 3a, + a: + 3a2 + a,a2), contrary to 

the formula given in Reference 1. For SO(2N), with R = [ ala2...aNm2yz ] 
N-2 

C2(R) = 1 (ka: + [2kN - k(k + I)1 a,) 

k:l 

+ 4 (Ny2 + (2N - 2)Ny + Nz2 + (2N - 2)Nz) 

N-2 N-2 

+ 2 1 1 jaiaj + 1 kak(y + z) + (r - l)yz /(2N2 - N) . 

i=2 j<l k=l 

For Sp(ZN), with R = [ a,a2...aN I, 

C*(R) = 
c 

k [ai + (2N + I - k)ak ] 

k:I. 

+z j$, 2iaiaj ) 12WN + 1) 

And for SO(2N + I), with R = [a,a2...aNq1z I, 
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k [ai + (2N - k)ak] 

N-l 

+ (Nz2 + 2N2d/4 + 1 kakz 

k=l 

The Dynkin index (9, in reference 1) is given by R(R) = C2(R) x Dim(R). These 

values of C2(R) are normalized such that C2 of an elementary spinor = C2 of the 

defining (ZN-dimensional) representation of Sp(2N) = 1. For the purposes of MAC 

analysis, this normalization can be specified arbitrarily. 

In principle, one would also like to have at hand rules for dimensions, 

Kroenecker products, and C2(R) for the exceptional groups. However, the 

procedures would certainly contain enough different cases and exceptions that they 

would not shed much light on matters, and would be sufficiently cumbersome to 

preclude any thought of hand calculations. In these cases, the use of Schur 

functions is required. 
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APPENDIX: KROENECKER PRODUCTS 

For compactness, the representations are referred to by their dimension, 

when no ambiguity results and the dimension is less than 1000 so that the repre- 

sentation appears in reference 1. 

7x 7=1+21+27 

7x 8=8+48 

7 x 21 = 7 + 35 + 105 

7 x 27 = 7 + 77 + 105 

7 x 35 = 21 + 35 + 189 

7 x 48 = 8 + 48 + 112 + L6gs 

7 x 77 q 27 + 182 + 330 

8 x 8 = 1 + 7 + 21 + 35 

8 x 21 = 8 + 48 + 112 

8 x 27 = 48 + 16gs 

8 x 35 = 8 + 48 + 112 + 112’ 

112 = [Oil 1 ; 112’ = [003 I 

168, = [201 I ; 168 = [ 020 I 

8 x 48 : 7 + 21 + 27 + 35 + 105 + 189 

8 x 77 q 168, + 448 

21 x 21 = 1 + 21 + 27 + 35 + 168 + 189 

21 x 27 = 21 + 27 + 189 + 330 

21 x 35 = 7 + 21 + 35 + 105 + 189 + 378 

21 x 48 q 8 + 48 + 48 + 112 + 112’ + 168, + 512 

21 x 77 = 77 + 105 + 616 + 819 
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27 x 27 = 1 + 21 + 27 + 168 + 182 + 330 

27 x 35 = 35 + 105 + 189 + 616 

27 x 48 = 8 + 48 + 112 + 16Ss + 448 + 512 

27 x 77 = 7 + 77 + 105 + 378 + 693 + 819 

35 x 35 = 1 + 7 + 21 + 27 + 35 + 105 + 168 + 189 + 294 + 378 

35 x 48 q 8 + 48 + 48 + 112 + 112 + 112’ + 168, + 512 + 560 

3.5 x 77 = 189 + 330 + 616 + [302 I = 1560 

48 x 48 = 1 + 7 + 21 + 21 + 27 + 35 + 35 + 77 + 105 + 105 + 168 + + 189 

189 + 330 + 378 + 616 

48 x 77 = 48 + 168, + 448 + 512 + [4011 = 1008 + [2111 = 1512 _ 

77 x 77 = 1 + 21 + 27 + 168 + 330 + 714 + 825 + [410 I = 1750 + [600] = 1911 

9 x 9 = 1 + 36 + 44 

9 x 16 = 16 + 128 

9 x 36 = 9 + 84 + 231 

9 x 44 = 9 + 156 + 231 

9 x 84 = 36 + 126 + 594 

16 x 16 = 1 + 9 + 36 + 84 + 126 

16 x 36 : 16 + 128 + 432 

16 x 44 = 128 + 576 

16 x 84 = 16 + 128 + ~4j2 + 768 

36 x 36 = 1 + 44 + 126 + 495 + 594 

36 x 44 = 36 + 44 + 594 + 910 

36 x 84 = 9 + 84 + 126 + 231 + 924 + [OllO] = 1650 
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44 x 44 = 1 + 36 + 44 + 450 + 495 + 910 

44 x 84 q 84 + 231 + 924 + f 20101 = 2457 

84 x 84 q 1 + 44 + 84 + 126 + 495 + 594 + 924 + [0020] = 1980 + [0102] = 2772 

SO(l1) 

11 x II = 1 + 55 + 65 

11 x32 = 32 + 320 

I1 x 55 = 11 + 165 + 429 

II x 65 = 11 + 275 + 429 

32 x 32 q 1 + II + 55 + 165 + 330 + 462 

32 x 55 = 32 + 320 + [OlOOl 1 = 1408 

32 x 65 = 320 + [20001 1 = 1760 

55 x 55 = 1 + 55 + 65 + 330 + fO2000 I = 1144 + [IO100 I = 1430 

55 x 65 = 55 + 65 + 1430 + [210001 = 2025 

65 x 55 q 1 + 55 + 65 + 935 + 1144 + 2025 

sot 13) 

13 x 13 = 1 + 78 + 90 

13 x 64 = 64 + 768 

13 x 78 = 13 + 286 + 715 (715 : [1100001; 715’ = [000100]) 

13 x 90 = 13 + 442 + 715 

64 x 64 q 1 + 13 + 78 + 286 + 715 + [OOOOlOl = 1287 + [000002 I q 1718 

64 x 78 = 64 + 768 + [OlOOOll = 4160 

64 x 90 = 768 + [200001 1 = 4992 
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78 x 78 = 1 + 78 + 90 + 715’ + [020000] = 2275 + [lOlOOO] = 3925 

78 x 90 = 78 + 90 + [210000] = 2927 + 3925 

90 x 90 = 1 + 78 + 90 + 2275 + [400000 ] = 2629 + 2927 

SO(2N + 1) N >6 

(2N + 1) @ (2N + 1) = 1 fZ+ N(2N + 1) $ (2N2 + 3N) 

so(8) 

8 x 8 = 1 + 28 + 35 CR1 = R2] 

8x 8=8+56 CR, h R2) 

8 x 28 = 8 + 56 + 160 

f 8 8 x x 35 35 = q 8 56 + + 112 224 + 160 

8 x 56 = 28 + 35 + 35 + 350 

8 x 56 = 8 + 56 + 160 + 224 

28 x 28 q 1 + 28 + 35 + 35 + 35 + 300 + 350 

28 x 35 = 28 + 35 + 350 + 560 

28 x 56 = 8 + 56 + 56 + 160 + 224 + 224 + 840 

35 x 35 = 1 + 28 + 35 + 294 + 300 + 567 

35 x 35 : 35 + 350 + 840 

35 x 56 = 8 + 56 + 160 + 224 + 672 + 840 

35 x 56 = 56 + 160 + 224 + 224 + [2011] = 1296 (or [IO211 or [1012]) 

56 x 56 = 1 + 28 + 28 + 35 + 35 + 35 + 300 + 350 + 350 + 567 + 567 + 840 

56 x 56 = 8 + 56 + 56 + 112 + 160 + 160 + 224 + 224 + 840 + 1296 
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SO( IO): Representations appearing here are: 

1 = [00000 1 1050 q I10002 1 

10 q ~100001 1200 = [00101 I 

16 = 100001 1 1386 = [210001 

45 = [01000 1 1440 = [00012 1 

54 = l200001 1728 = [lOOIl I 

120 = [00200 I 1782 = I50000 1 

126 = [00002 I 2640 = [300011 

144 = [loo01 I 2772 = fOOOO4 I 

210 = [00011 1 2970 = [OllOOl 

210’ = [ 30000 I 3696 : [01002 I 

320 = [llOOOl 3696s= [I1001 1 

560 = [010011 4125 = 100200 1 

660 = [40000 I 4290 = L60000 1 

672 = [00003 1 4312 : [201001 

720 = 120001 1 4410 = [120001 

770 = [02000 I 4608 = [31000 I 

945 = [lOlOO I 4950 = [200021 

10 x 10 = 1 + 45 + 54 

10 x 16 = 16 + 144 

10 x 45 = 10 + 120 + 320 

10 x 54 = 10 + 210' + 320 

10 x 120 = 45 + 210.+ 945 

10 x 144 = 16 + 144 + 560 + 720 

10 x 210 = 120 + 126 + 126 + 1728 

10 x 210’ = 54 + 660 + 1386 

FERMILAB-Pub-80/49-THY 

5280 = [IO003 I 

5940 = [OlOll I 

6930 q COO013 1 

7644 = fO30001 

7920 = [40001 1 

8085 = L20011 1 

8800 = [lOlO1 1 

8910 = [OOOZZ 1 

10560 = [OOlll 1 

. 11088 = [100121 

12870 = [41000 I 

14784 = [30100 I 

15120 = C21001 1 

16380 = 122000 1 

17325 = [30002 1 

21860 = (30011 I 
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I 16 x 16 = 1 + 45 + 210 ([00001] x rooolol) 

\ 16 x 16 = 10 + 120 + 126 ([OOOOI I x IO0001 I) 

16 x 45 = 16 + 144 + 560 

16 x 54 = I44 + 720 

16 x 120 = 16 + 144 + + 560 1200 

t 16 16 x x 126 126 = = 16 144 + + 560 672 + + 1440 1200 ([000011 x x IOOOO2]) 

([000011 ~000201) 

16 x 144 = 10 + 120 + + 126 320 + 1728 ([000011 x 

16 x 144 = 45 + 54 + 210 + ([000011 945 + 1050 x 

16 x 210 = 16 + 144 + 560 + + 1200 1440 

16 x 210’ = 720 + 2640 

45 x 45 = 1 + 45 + 54 + 210 + 770 + 945 

45 x 54 q 45 + 54 + 945 + 1386 

45 x 120 = 10 + 120 + 126 + 320 + + 1728 2970 

45 x 126 q 120 + 126 + 1728 + 3696 

45 x 144 = 16 + 144 + 144 + 560 + 720 + 1200 + 3696s 

45 x 210 q 45 + 210 + 210 + 945 + 1050 + 1050 + 5940 

45 x 210’= 210’ + 320 + 4312 + 4608 

54 x 54 = 1 + 45 + 54 + 660 + 770 + 1386 

54 x 120 = 120 + 320 + 1728 + 4312 

54 x 126 = 126 + 1728 + 4950 

54 x I44 = 16 + 144 + 560 + 720 + 2640 + 3696s 

54 x 210 = 210 + 945 i 1050 + 1050 + 8085 

54 x 210’= 10 + 210’ + 320 + 1782 + 4410 + 4608 

[ 10010 1) 

[ 10001 I) 
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120 x 120 = I + 45 + 54 + 210 + 210 + 770 + 945 + 1050 + + 1050 4125 + 5940 

120 x 126 = 45 + 210 + 945 + 1050 + 5940 + 6930 

120 x I44 = 16 + 144 + 144 + 560 + 560 + 720 + 1200 + 1440 + 3696, + 8800 

120 x 210 = 10 + 120 + 120 + 126 + 126 + 320 + 1728 + 1728 + 2970 + 

3696 + 3696 + 10560 

120 x 210’ = 945 + 1386 + 8085 + 14784 

126 x 126 = 1 + 45 + 210 + 770 + 5940 + 8910 

126 x 126 = 54 + 945 + 1050 + 2772 + 4125 + 6930 

f 126 126 x x 144 144 = = 16 144 + + 144 560 + + 560 720 + + 1200 1200 + + 1440 1440 + + 3696s 5280 + + 11088 8800 ([00002 ([00002] I x x [ [ loolp 1OOGi 

126 x 210 q 10 + 120 + 126 + 320 + 1728 + 2970 + 3696 + 6930 + 10560 

126 x 210’= 1050 + 8085 + 17325 

144 x 144 = 1 + 45 + 45 + 54 + 210 + 210 + 770 + 945 + 945 + 1050 + + 1050 

1386 + 5940 + 8085 (~100011 x [100011) 

144 x 144 = 10 + 120 + 120 + 126 + 126 + 210 + 320 + 320 + 1728 + 1728 + 

2970 + 4312 + 4950 + 3696 ( [10001] x [ lOOlO] ) 

144 x 210 = 16 +~I44 + 144 + 560 + 560 + 642 + 720 + 1200 + + 1200 1440 + 

3696s + 8800 + 11088 

144 x 210’: 144 + 720 + 2640 + 3696, + 7920 + 15120 

210 x 210 = 1 + 45 + 45 + 54 + 210 + 210 + 770 + 945 + 945 + 1050 + 1050 + 

4125 + 5940 + 5940 + 6930 + 6930 + 8910 

210 x 210’= 1728 + 4312 + 4950 + 4950 + 28160 

210 x 210’= 1 + 45 + 54 + 770 + 1386 + 4290 + 7644 + 12870 + 16380 
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SO(l2) 

12 x 12 = 1 + 66 + 77 

12 x 32 = 32 + 352, (352, = [1000011) 

12 x 66 = 12 + 220 + 560 

12 x 77 = 12 + 352 + 560 (352 = 1300000 I) 

32 x 32 = 1 + 66 + 462 + 495 

32 x 32 = 12 + 220 + 792 

32 x 66 = 32 + 352s + [0100011 = 1728 

32 x 77 = 352s + [200001], = 2112 

66 x 66 = 1 + 66 + 77 + 495 + [ 0200001 = 1638 + [101000] = 2079 

66 x 77 = 66 + 77 + 2079 + [210000 I = 2860 

77 x 77 = 1 + 66 + 77 + [ 4000001 = 1287 + 1638 + 2860 

SO(l4) 

14 x 14 = 1 + 91 + 104 

14 x 64 =64+832 

14 x 91 = 14 + 304 + 896 

64 x 64 = I + 91 + [00010001 = 1001 + [ 0000011] = 3003 

64 x 64 = 14 + 364 + [0000002] = 1716 + [OOOOlOO] = 2002 

64 x 91 = 64 + 832 + [OlOOOOl] q 4928 

91 x 91 = 1 + 91 +.104 + 1001 + [0200000] = 2240 + [lOlOOOOl = 4844 

SO(2N) N >7 

(2N) @ (2N) = (1) 69 (2N2 - N) @3 (2N2 + N - 1) 
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6 x 6 = 1 + 14a + 21 (14, : [OIO] ; l'rb = [OOI]) 

6 x I4 
a = 14b +64+6 

6 x 14 b = 14, + 70 

6 x 21 = 6 + 56 + 64 

6 x 56 = 21 + 126' + 189 (126' = [400] ; 126 = [Oll]) 

6 x 64 = 14, + 21 + 70 + 90 + 189 

6 x 70 = l'rb + 64 + 126 + 216 

6 x 84 = 126 + 378 

6 x 90 = 64 + 126 + 357 

"a x 14, = 1 + 14a + 21 + 70 + 90 

"a x 14b = 6 + 64 + 126 

14 a x 21 = 14, + + 21 70 + 189 

14 a x 56 = 56 + 64 + 216 + 448 

14a x 64 = 6 + 14b + 56 + 64 + 64 + 126 + 216 + 350 

14 a x 70 = 14, + 21 + 70 + 84 + 90 + 189 + 512 

14 a x 84 = 70 + 512 + 594 

14 x = a 90 14, + 70 + 90 + + 189 385 + 512 

"b x 14 a = 1 + 21 + 84 + 90 

14b x 21 = 14b + 64 + 216 

"b x 56 = 70 + 189 + 525 

14b x 64 = 14, + 21 + 70 + 90 + 189 + 512 

l'rb x 70 = 6 + 56 + 64 + 126 + 350 + 378 

14b x 84 = lBb + 216 + 330 + 616 

14b x 90 = lrrb + 64 + 216 + 350 + 616 
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21 x 21 = I + 14, + 21 + 90 + 126’ + 189 

21 x 56 = 6 + 56 + 64 + 252 + 350 + 448 

21 x 64 = 6 + 14b + 56 + 64 + 64 + + 126 216 + 350 + 448 

21 x 70 =14+ 70 + 70 + 90 + 189 + 512 + 525 

21 x 84 =84+90+512+12021=1078 

21 x 90 = 21 + 70 + 84 + 90 + 189 + + 512 924, (924, = t2201; 924b = 14101) 

56 x 56 = 1 + 12 + 21 + 90 + 126’ + 189 + + 385 462 + 924, + 924b 

56 x 64 =14a + 21 + 70 + 90 + 512 + 126’ + 189 + + 189 525 + 924, + 924b 

56 x 70 =14a+ 448 + 1100 + 64 + 126+ 216 + 216 + 350 + [4011 = [2111 : 1386 

56 x 84 = 126 + 350 + 37.8 + 1386 + [302] = 2464 

56 x 90 = 56 + 64 + 126 + 216 + 350 + 378 + 448 : + 1386 + [320 ] 2616 

64 x 64 = 1 +14a+14a + 21 + 21 + 70 + 70 + 70 + 84 + 90 + 90 + 189 + 189 + 

189 + 385 + 512 + 512 + 525 + 924, 

64 x 70 = 6 + l(rb + 56 + 64 + 64 + 64 + 126 + 126 + 216 + 216 + 350 + 350 + 

378 + 448 + 616 + 1386 

64 x 84 = 64 + 126 + 216 + 616 + 350 + 378 + 1386 + : 1112 I 2240 

64 x 90 = 6 + 14a+ 64 + 64 + 126 + 126 + 216 + 216 + 350 + 350 + 378 + 

448 + 616 + [I301 = 1344 + 1386 

70 x 70 = 1 + 14a+ 21 + 21 + 70 + 84 + 90 + 126’ + 189 + 189 + 385 + 512 + 

512 + 594 + 924 + [2021 = 1078 

70 x 84 = 14, + 70 + 189 + 385 + 512 + 525 + 594 + q [IO31 1386’ + [121] = 2205 

70 x 90 = 14a + 21 + 70 + 70 + 90 + 189 + 189 + 395 + 512 + 512 + 594 + 

924, + [I21 ] = 2205 
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84 x 84 q 1 + 21 + 84 + 90 + 126’ + 92rra + [004 1 = 1001 + 1078 + [040 1 = 

1274 + [022 ] q 2457 

84 x 90 = 21 + 84 + 90 + 189 + 512 + 924, + 1078 + 2205 + 2457 

90 x 90 = 1 + 14a + 21 + 70 + + 84 126’ + 90 + 90 + 169 + 385 + 512 + 512 + 

525 + 924, + 1078 + 1274 + 2205 

8 x 8 =1+27+36 

8 x 27 = 8 + 48 + 160 

8 x 36 = 8 + 120 + 160 

8 x 42 = 48 + 228 

27 x 27 = I + 27 + 36 + 42 + 308 + 315 

27 x 36 = 27 + 36 + 315 + 594 

27 x 42 = 27 + 315 + 792, (792, = [01101; 792b q [OlOll) 

27 x 48 = 8 + 48 + 160 + 288 + 792, 

36 x 36 = 1 + 27 + 36 + 308 + 330 + 594 

36 x 42 = 42 + 315 + [20011 = 1155 

36 x 48 = 48 + 160 + 288 + [20101 = 1232 

42 x 42 q 1 + 36 + 308 + 594 + 825 

42 x 48 = 8 + 160 + 792, + [OOlll = 1056 

48 x 48 = 1 + 27 + 36 + 308 + 315 + 792b + 825 
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10) Sp( 

10 x 10 = 1 + 44 + 55 

10 x 44 = 10 + 110 + 320 

10 x 55 = 10 + 220 + 320 

44 x 44 = 1 + 44 + 55 + 65 + 780 + 891 

44 x 55 q 44 + 55 + 891 + [21000 1 = 1430 

55 x 55 = 1 + 44 + 55 + 715 + 780 + 1430 

12) Sp( 

12 x 12 = 1 + 65 + 78 

12 x 65 = 12 + 208 + 560 

12 x 78 = 12 + 364 + 560 

65 x 65 = 1 + 65 + 78 + 429 + [020000] = 1650 + [1200001 q 2001 

65 x 78 = 65 + 78 + + [2100001 = 2002 2925 

78 x 78 = 1 + 65 + 78 + [400000 I = 1365 + 1650 + 2925 

SP(l4) 

14 x 14 : I + 90 + 105 

14 x 90 = 14 + 350 + 896 

90 x 90 = 1 + 105 + 90 + 910 + [0200000] = 3094 + [1010000] = 3900 

Sp(2N) N’ 7 

(2N) x (2N) = 1 + (N(2N - 1) - I) + (N(2N + I)) 
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FIGURE CAPTIONS 

121031 I in SU(6) can be written as (75441). 

(a) (123 ] = (4431) in SO(7). (b) 10021 = (11 I). (cl [ 003 ] = 

(4111). (d) IO011 q (t000). 

IO0014 I = (t22221) in SO(10). 

(a) (41000) in SO(81 has dimension 56 = 

14=12~10.8~6~4~4~6*8~2*4*2 
2’231113, T 

‘~‘,.,.,.,.,,.,;.,,I”i~:~~~~~~.gsp2(~~.:a 
dimension 12s’ = 

2121!3r5r7r 
In W(4), (110)@(100) = (210) + (111). ’ ’ ’ 

In Sp(61, (110) @ (210) contains two (210)‘s. 

(2110) @ (1100) in SO(V) contains (2000). 

In Sp(S), (1111) x (1110) does not contain (1110). 

(110) x (t 100) in SO(7) q (4210) + (t 110) + (+200) + (4100) + 

(fill) + (4000) + <loo). 

8 lOOI@ (+lOO) in SO(7) = (110) + (210) + (111) + (220) + (211) + 

(221) + (200) + (300) + (210) + (310) + (211) + (311) + (000) + 

(100) + (1101 + (111). 

In SO(S) (lllO)@ (1110) contains two (1100)‘s. 

16 x Ti; in SO@). 

(t11000)@+(00000) in SO(10) = (11000) + (11110) + (21100) = 

(22000) + (22200) + (22110) + (2111). 

In SO@), (1111)@(t1000)= (1111)@{(1000)~(t0000)- 

+(0000)} = (42111) + f(1110) + (42100) + (+lOOO) + (+llOO) + 

ctooob,. 

Doing (1111) @ (4 1000) using rule 5c. 

[ 000021 ~3 [ 00002 ] (126 x 126) in SO(10) = (22222) + (22211) + 

(22200) + (21111) + (21100) + (20000): 126 x 126 = 2772 + 

6930 + 4125 + 1050 + 945 + 54. 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. II: 

Fig. 12: 

Fig. 13: 

Fig. 14: 

Fig. 15: 

Fig. 16: 
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Fig. 17: 

Fig. 18: 

Fig. 19: 

(22222) x (*11111) = (33331) + (33221) + (22221) + (33111) + 

(22111) +(11111). Note that the first column remains 

untouched. 

[IO] ~(10) in G2 = [IO] = (lO)+[ 011 = (ll)+ [OOI = (00)in 

W(3). 

[ 11 I =(21) in G2 contains (31) + (20) + (32) + (21) + (21) + 

(10) + (22) + (II) of SU(3). 
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